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ABSTRACT

A low-order dynamical model that demonstrates the stable property of the tropical cyclone (TC)maximum

potential intensity (MPI) equilibrium under the wind-induced surface heat exchange feedback was recently

presented by Kieu. In this study, an alternative TC-scale model that allows for the gradient wind imbalance in

the planetary boundary layer is proposed to further examine the stability of the MPI equilibrium. Despite

different balanced assumptions, it is shown that the new TC-scale model possesses a similar MPI equilibrium

with the same asymptotic stability. The structurally stable property of the MPI equilibrium is held for a range

of the model parameters, regardless of the model initial conditions or numerical configurations. In addition,

an explicit dependence of theMPI on the environmental lapse rate is obtained from the new TC-scale model,

which reveals subtle impacts of the tropospheric stratification on TC intensity beyond the traditional MPI

framework. The existence and interpretation of two distinct time scales during TC development will be also

discussed.

1. Introduction

Modeling and observational studies of the tropical cy-

clone (TC) development have long documented the exis-

tence of a maximum intensity limit that a TC can attain in

both idealized and real-data experiments (Rotunno and

Emanuel 1987; Bryan and Rotunno 2009; Emanuel 2000;

Hakim 2011, 2013; Brown andHakim 2013). The existence

of such a maximum potential intensity (MPI) limit as well

as the dependence of the MPI on the large-scale environ-

ment well accord with the classical MPI theory by which

the TC secondary circulation acts as the legs of a Carnot

heat engine (Emanuel 1986, 1988; Garner 2015). Under

the neutral slantwise convection condition and the gradi-

ent wind balance, Emanuel obtained an explicit expression

for the MPI as a function of sea surface temperature and

outflow temperature, which allows for quantifying the

long-term variation of TC intensity and plays a key role in

current TC climate research.

Despite well-documented evidence of the MPI limit

in TC development, a less-understood but equally

important question is the stability of the MPI equilib-

rium. Practically, an unstable MPI equilibrium would

render theMPI limit meaningless for applications, as the

MPI would never be reached. As such, it is of impor-

tance to establish the stability of the MPI equilibrium

before it can be used to derive a reliable estimation of

the TC maximum intensity or quantify the dependence

of the MPI on the large-scale environment.

In an attempt to address the stability of the MPI

equilibrium from a thermodynamic perspective,

Schönemann and Frisius (2012) presented a simplified

model that is based on the exchange of saturated en-

tropy between the eyewall and the planetary boundary

layer (PBL). In this model, the MPI equilibrium is

determined as a constraint at which the exchange of

entropy becomes stationary. Because of a complex re-

lationship between the saturated PBL entropy and the

mass flux across the absolute angular surfaces within the

eyewall region, the stability of the MPI is not explicitly

obtained from this model but rather through a range of

numerical simulations in which sea surface temperature

(SST) and the PBL relative humidity are treated as

model parameters. Their analyses of the MPI constraintCorresponding author: Chanh Kieu, ckieu@indiana.edu
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showed two stable points: one corresponding to theMPI

equilibrium and the other corresponding to a rest state.

Despite the demonstrated stability, the asymptotic limit

of the MPI equilibrium in Schönemann and Frisius’s

(2012) model depends sensitively on several time scales

for convective relaxation and diabatic cooling, which

render their MPI expression different from Emanuel’s

MPI limit.

Kieu (2015, hereinafter K2015) recently proposed a

different low-order model to study the stability of the

MPI equilibrium. By employing specific characteristics

of TC scales, including the scales of the maximum tan-

gential wind V, the maximum vertical motion in the TC

eyewall W, and the maximum warm anomaly at the

storm center B, a set of equations representing the dy-

namics of the TC scales can be obtained [hereinafter

referred to as the hurricane-scale dynamical (HSD)

model]. Examination of the stability of the HSD model

revealed that the MPI equilibrium is asymptotically

stable and unique in the phase space of (V, W, B) under

the wind-induced surface heat exchange (WISHE)

feedback. The inclusion of radiative forcing could

modify the basin of the attraction, but all the main

properties of the MPI stability remain valid.

The stable MPI equilibrium as captured in K2015’s

study explains why numerous idealized simulations of

TCs are almost ensured to produce a similar equilibrium

under the same ambient environment, regardless of

the modeling configurations and parameterizations. To

some extent, this result is consistent with the stable

MPI examined in Schönemann and Frisius (2012) and

reflects a deeper theorem for the development of an

axisymmetric rotational flow by which any vortex will

have to grow and approach an MPI limit, as the MPI

limit is the only end fate of the vortex evolution.

While K2015’s model could capture important sta-

bility of the MPI equilibrium, a caveat to this model is

the use of the gradient wind balance to obtain a re-

lationship between the pressure deficit and the tangen-

tial wind. Moreover, an absolute neutral stratification is

assumed so that the stability analysis can be simplified,

which is, however, not fully justified. An apparent issue

with the gradient wind assumption in K2015’s model is

that this balance is not applicable in the PBL, where the

strong convergence of radial inflow is important for the

amplification of a TC vortex through the advection of

the absolute angular momentum (AAM). One could in

principle allow for a three-way balance in the PBL by

including the frictional contribution to the central

pressure deficit as discussed in Kieu et al. (2010) and

K2015. However, this approach would not reveal a

possible feedback in the PBL whereby a stronger tan-

gential wind will lead to stronger frictional convergence,

which in turn spins up the tangential wind further because

of the inward AAM advection (Montgomery and Smith

2014; Smith et al. 2015; Smith andMontgomery 2015). In

fact, Smith et al. (2015) proposed that the boundary

feedback mechanism related to the AAM advection is a

main physical process accounting for the amplification of

the surface circulation, thus evoking the importance of

the PBL gradient wind imbalance in TC development.

In this study, we wish to present a different low-order

model within the TC-scale framework to study the MPI

equilibrium, which allows for the imbalance of the gra-

dient wind in the PBL. This reexamination of the MPI

stability from a different angle will shed some further

light into the stability of the maximum intensity that a

TC can attain, thereby establishing the stable property

of Emanuel’s MPI solution. The rest of the paper is or-

ganized as follows: In the next section, a formulation

for a new TC-scale model based on the gradient wind

imbalance will be presented. Section 3 discusses in de-

tails the stability analysis, and some concluding remarks

will be presented in the final section.

2. TC-scale dynamic model

Because of its succinct form and completeness in

representing systems with strong rotational flows, we

start our analyses with the system of anelastic equa-

tions in the pseudoheight coordinates as follows (e.g.,

Ogura and Phillips 1962; Wilhelmson and Ogura 1972;

Willoughby 1979):
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where the pseudoheight z[2H ln(p/ps), with H the

scale height of the atmosphere and ps the surface pres-

sure; u, y, and w are wind components in the radial,

azimuthal, and vertical directions in the cylindrical co-

ordinate (r, u, z), respectively; f is the geopotential

height perturbation relative to a reference value f(z);

b[ gT 0/T(z) is the buoyancy variable relative to the

reference temperature T(z); f is the Coriolis parameter;

Fu,y,w denote the frictional forces in the PBL; and Q

represents the total diabatic heating rate associated with

all sources of latent/sensible heating and radiative
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forcing. Note that in the above system of anelastic

equations, the subscripts (t, r, u, z) denote partial

derivatives in the corresponding directions, and

S[ g(Gd 2G)/T represents the atmospheric stratifica-

tion in terms of the dry adiabatic lapse rate Gd and en-

vironmental lapse rate G.
Consider next a set of typical scales for TCs including

the scales for the maximum radial wind in the boundary

layer U, the maximum tangential wind near the surface

V, the maximum vertical motion in the eyewall W, the

absolute geopotential deficit between the vortex center

and the eyewall DF, the radius of the maximum wind R,

and themaximum buoyancy at the vortex centerB. Note

that in the pseudoheight coordinate, the thermodynamic

equation is written in terms of the buoyancy variable b,

and so the scale of the maximum buoyancy B will

therefore correspond to a warm core at the TC center as

B[ gT 0/T(z), where T 0 denotes the maximum warm

core at the vortex center with respect to far-field envi-

ronment. Scale analysis of Eqs. (1)–(5) for the TC inner-

core region under the axisymmetric approximation

leads to

dU
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where thehydrostatic balance is used inEq. (8) and the scale

analysis for the fictional forces assumes the bulk formula for

both the radial and tangential momentum equations in

the PBL of depth h such that Fu,y 5 ›tu,y/›z’ tu,y/h.

Here, tu,y are surface momentum fluxes parameterized

as tu ’CDU
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 1V2

p
’CDUjVj and similar for ty ’

CDVjVj, where CD is the surface drag coefficient. Note

that the scale analyses for the advective terms

in the radial and tangential momentum equations have

taken also into account the fact that ›u/›r; ›y/›r; 0

near the radius of maximum wind (RMW) and

w›u/›z;w›u/›z; 0 because of weak vertical motion

in the PBL. As such, the scales of these advective terms

are of a higher order as compared to other terms near

the RMW (Anthes 1974). In addition, the scale analysis

for the partial derivative ofwwith height must consider

that w is maximum in the layer between 500 and

300 hPa, and so ›w/›z; 2W/H.

Because our main focus is in the inner-core region, the

impact of the Coriolis force is hereinafter neglected in the

all-scale estimation to simplify our analyses. Except for a

more complex characteristic equation and eigenvalues,

the inclusion of this Coriolis parameter can be shown to

have minimal impacts on the MPI equilibrium (Kieu and

Wang 2017). Upon substituting the relationships

W52
UH

R
and DF5BH (11)

that are obtained from Eqs. (8) and (9) into Eqs. (6), (7),

and (10), and note that U � V, we have

dU

dt
5 gV2 2

g

a
B2bUjVj , (12)

dV

dt
52gUV2bVjVj , (13)

dB

dt
5 gUB1sU1Q , (14)

where g[ 1/R, b[CD/h, a5 1/H, and s[ SH/R. Un-

like the HSD system studied in K2015 that relies on the

gradient wind balance, the above TC-scale system

(12)–(14) uses the gradient wind unbalance so that

evolution of the radial inflow u is explicitly taken into ac-

count in Eq. (12).

Following K2015, we will close the above system

(12)–(14) by utilizing a bulk parameterization for the

diabatic heating source Q, using the WISHE mech-

anism and the Newtonian cooling relaxation forcing

so that the total diabatic heating Q is given by

Q;h
gC

h

h

(s
s
2 s

a
)

C
p
T

jVj1 kB , (15)

where Ch is the coefficient for heat (sensible and latent)

transfer, Cp is the constant pressure heat capacity, ss,a are

the saturated enthalpy at the ocean surface and the actual

enthalpy at the atmospheric layer right above the ocean

surface, and k, 0 represents the Newtonian radiative re-

laxation rate. Note in the above expression for the total

heating,Qhas been rearranged to have a correct dimension

after taking into account the definition of buoyancyb inEq.

(10) [i.e., the factor g/T in Eq. (15) is required to convert

from potential temperature to the buoyancy variable b].

Following Emanuel (1986), a factor h is also introduced in

Eq. (15) to represent the efficiency of the energy conver-

sion, which is determined by the difference between the sea

surface temperature and the outflow temperature. This

Carnot energy conversion factor will ensure that a

critical point obtained from theTC-scale systemwillmatch

Emanuel’sMPI formula as will be seen in the next section.
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Similar to the representations of the frictional force

Fu,y, the total enthalpy associated with the temperature

and moisture flux gradient within the PBL in the above

expression for Q is approximated as ts/h, where the

surface enthalpy flux ts is represented in terms of the

saturated enthalpy at the ocean surface and the actual

enthalpy at the atmospheric layer right above the ocean

surface as ts ;Ch(ss 2 sa). Physically, the closure in

Eq. (15) implies that the total heating in the TC region is

associated with the enthalpy flux at the ocean surface,

part of which will be used to do work against the fric-

tional force, and the remaining part will be exhausted at

the outflow level.

Substituting Eq. (15) into Eq. (14), we obtain a system

of equations describing the evolution of the TC scales

as follows:

dU

dt
5 gV2 2

g

a
B2bUjVj , (16)

dV

dt
52gUV2bVjVj , (17)

dB

dt
5 gUB1sU1 djVj1 kB , (18)

where the parameter d[h(gCh/h)[(ss 2 sa)/CpT]. It

should be mentioned that the absolute sign for jVj in the

WISHE parameterization in Eq. (15) and frictional

force is important in Eqs. (16)–(18), because it deter-

mines the basin of the attraction between two domains

V. 0 andV, 0; as will be shown in the next section. For

the sake of discussion, the system (16)–(18) will be

hereinafter referred to as a modified TC-scale dynamical

(MSD) model to distinguish it from the HSD system

presented in K2015.

Although the above scale analyses are mostly appli-

cable for the mature stage, we propose that these scale

analyses can be extended to other stages of the TC de-

velopment as well so long as U � V. Indeed, previous

observational and modeling studies have shown that the

quasi-gradient balance can well describe the evolution

of TC-like vortices for which gradient wind balance is

maintained above the PBL during TC development

(e.g., Hack and Schubert 1986; Willoughby 1990; Liu

et al. 1999; Schubert et al. 2007). While gradient wind

balance cannot be exactly applied in the PBL, the im-

plication of this first-order gradient balance approxi-

mation is that radial inflow or vertical motion is always

smaller than the tangential flow at different stages of the

TC development, which suffices to derive the above TC-

scale dynamic model in Eqs. (16)–(18). As such, we will

postulate the validity of this modified TC-scale system

for all stages of the TC development with a caution that

the results obtained from this MSD model will be most

suitable for the strong intensity stage. Such a caveat is

not a severe limit of the MSD system, because our ul-

timate focus in this study is on the MPI equilibrium at

the mature state. Therefore, this caveat of the TC-scale

analysis will be alleviated as TCs approach their MPI

equilibrium.

3. Stability analysis

a. Critical points

Before examining the critical points1 of the MSD

system and their associated stability, it is important to

note two key properties of the MSD system that allow

formuch simplified stability analysis of theMSD system.

First, it is readily seen from Eq. (17) that, similar to

K2015’s HSD system, the plane V5 0 acts as a separa-

trix in the phase space of (U, V, B), where the domain

V. 0 is completely separated from the domain with

V, 0. Exactly on the plane V5 0, flows will be strictly

confined on this plane because _V5 0,2 and so there is no

possibility for an orbit starting in the domain V. 0 to

cross the plane V5 0 and move to the other domain

V, 0. This important property allows us to work ex-

clusively in the domain V. 0 or V, 0 without the need

to consider possibilities of a flow crossing each other in

the absence of Coriolis force. Because of the symmetry

of the MSD system under the change of the variable

V/2V, the MSD system is valid in both hemispheres

similar to the HSD system examined in K2015. Given

the dominant cyclonic flow in theNorthernHemisphere,

we will herein focus on the regime V. 0 such that all

absolute value signs in theMSD system (16)–(18) can be

neglected. All analyses for the Southern Hemisphere

can be readily reproduced by simply replacing V by2V

in the MSD system. Detailed treatment of the Coriolis

force is given in appendix A.

A second important observation is that the divergence

of the forcing f of the MSD system [i.e., the right-hand

sides (RHSs) of Eqs. (16)–(18)] is not constant but de-

pends on the flow regime. Indeed, a direct calculation

of = � f, where f denotes the forcing vector on the

right-hand side of the MSD system, shows that

= � f523bV1 k. Given that k, 0 and V. 0, it is ap-

parent that the MSD system is dissipative. This means

that any initial small volume in the phase space will

shrink continuously, thus exhibiting all typical behaviors

1 By definition, critical points xc of a dynamical system _x5F(x)
refer to the points in the phase space at which the forcing F(xc)5 0.

2 It can be proven that there exist in fact periodic orbits on the

plane V5 0 that involve only U and B.
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of a dissipative system as long as we confine within the

regime V. 0.

To facilitate comparison with K2015’s model, we

consider first the simplest case of neutral stratification

without radiative cooling such that s5 k5 0 and

restrict our analysis to the regime V. 0. In this case,

Eqs. (16)–(18) are reduced to

dU

dt
5 gV2 2

g

a
B2bUV , (19)

dV

dt
52gUV2bV2 , (20)

dB

dt
5 gUB1 dV, "V 2 V . (21)

It is noticed that the system (19)–(21) possesses one zero

critical point (0, 0, 0) and the two other nonzero critical

points (Uc, Vc, Bc), which are the roots of the RHSs

of Eqs. (19)–(21) and given as follows:

U
c
52

bV

g
, V

c
56

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

ab

g2

g2 1b2

s
, B

c
5

d

b
. (22)

Because we limit our analysis to flow in the domain V
with V. 0, the critical point corresponding to the minus

sign of Vc will not be herein considered. A quick ex-

amination of the critical point Uc, Vc, Bc in Eq. (22)

shows that the value of Bc in Eq. (22) is identical to the

value of Bc in the HSD system studied in K2015, while

Vc in Eq. (22) is very close to the value of Vc obtained in

the HSD system despite very different underlying bal-

ance approximations for the vertical and the radial

momentum equations.

For an explicit comparison, recall that theHSDmodel

presented in K2015 is based on the gradient wind bal-

ance and the nonhydrostatic balance and results in a

critical point Vc given by

V2
c 5

d

ab
, (23)

which can be shown to be identical to Emanuel’s MPI

formula V2
MPI 5 (Ch)/(Cd)[(Ts 2T0)/Ts](ss 2 sa) upon

substituting all of the parameters a, b, and d into Eq. (23)

(see K2015). Comparison of the value ofVc obtained from

the MSD system [i.e., Eq. (22)] and that obtained from the

HSD system [i.e., Eq. (23)] shows that the two differ only

by a factor g/(g2 1b2)1/2. An estimation of this factor using

typical values of R; 30 km, CD 5 1023, and h; 1 km

shows that b5CD/h� g, and so g2/(g2 1b2); 1. Hence,

the values of Vc at the MPI critical point in both the

MSD and HSD models are very similar in spite of dif-

ferent balance approximations. In fact, direct in-

spection of the critical points Uc and Vc given by

Eq. (22) shows thatU2
c 1V2

c 5 d/(ab), which is identical

with the value Vc obtained from the HSD model

[cf. Eq. (23)]. This is physically expected, because the

gradient wind imbalance in theMSD system introduces

an additional component of the radial inflow, and the

projection of the horizontal wind vector on the tan-

gential direction is therefore reduced. As a result, the

MPI value Vc obtained from the MSD system is slightly

weaker than the MPI value obtained from the HSD

system in K2015.

That the values of the MPI critical point Vc obtained

from two different models are similar regardless of the

use of the hydrostatic or the gradient balance approxi-

mation is interesting. At the deepest essence, this result

indicates the unique nature of the MPI equilibrium that

does not appear to depend on the gradient wind imbal-

ance or the nonhydrostatic correction. This may help

explain why various models for TC development based

either on the gradient wind balance or the hydrostatic

approximation capture an MPI equilibrium similar to

full-physics models at the TC mature stage. Of course,

this similarity does not imply that the gradient wind

imbalance is unimportant in TC development, as it is

ultimately the imbalance in the PBL that drives the

evolution of a TC vortex. However, in the asymptotic

limit of t/‘, it does suggest that the restricted form of

the gradient wind imbalance as given by Eq. (12) has

little effect on the stability property of the MPI equi-

librium or the value of the MPI limit.

Of further significance is that the critical point in

Eq. (22) exhibits an explicit relation between the scales

of the maximum radial inflow and the tangential wind

(i.e.,Uc 5bVc/g). Such a relationship between these two

scales is consistent with the well-documented observa-

tion of U � V used in numerous theoretical models of

the TC structure (e.g., Willoughby 1979). Indeed, use of

the typical scale forR; 30km, h5 1 km, andCD5 1023

confirms that Uc is one order of magnitude smaller than

Vc, a fact well obtained from both observational and

modeling studies but has not been well understood

from the dynamical perspective. Although the value

of Uc ; 5m s21 appears to be smaller than a typical

value of the maximum radial inflow for a storm with

Vc 5 65m s21 because of the neglect of detailed eyewall

processes, that Uc is indeed much smaller than Vc as

obtained fromEq. (22) is critical, because it indicates the

MSD system provides a self-consistent relationship

among the TC scales as assumed in deriving Eq. (12).

The relation between Uc and Vc as given by Eq. (22)

reveals also how the scale of the radial inflow depends

on other parameters such as the depth of the PBL h

and the drag coefficient CD. For example, a direct im-

plication of Eq. (22) is that a thinner PBL or a larger
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drag coefficient CD would correspond to stronger inflow

given the same value of the maximum tangential wind.

In this regard, the MSD system not only provides an

expected MPI limit but also justifies the relationships

among different scales of TCs, which have not been

rigorously addressed in previous studies.

Given the critical point (Uc, Vc, Bc) in Eq. (22), we

next follow a similar approach to K2015 and use these

values to nondimensionalize the general MSD system

(19)–(21) for our subsequent stability analysis. Defining

U5 jUcju*, V5Vcy*, B5Bcb*, and t5Tt*, where the

superscript asterisk denotes nondimensionalized vari-

ables, we obtain

du*

dt*
5
gTV2

c

jU
c
j y*

2 2
gTB

c

ajU
c
j b*2bTV

c
u*y*, (24)

dy*

dt*
52gTjU

c
ju*y*2bTV

c
y*2, (25)

db*

dt*
5 gTjU

c
jb*u*1sTjU

c
j

B
c

u*

1
dTV

c

B
c

y*1 kTb*. (26)

Using the scale constraints at the critical point given by

Eq. (22) and neglecting the asterisk hereinafter with an

implicit convention that lowercase letters represent

nondimensional variables to simplify our notation, we

arrive at a set of nondimensionalized equations for the

scale dynamics of TCs as follows:

du

dt
5

g2TV
c

b
y2 2

TV
c
(g2 1b2)

b
b2bTV

c
uy , (27)

dy

dt
52bTV

c
(uy1 y2) , (28)

db

dt
5bTV

c
bu1

sb2TV
c

gd
u1bTV

c
y1 kTb . (29)

This system can be further simplified if we choose a time

scaleT such thatTbVc 5 1. SubstituteT5 1/(bVc) in the

system (27)–(29), and we have

du

dt
5 py2 2 (p1 1)b2 uy, (30)

dy

dt
52uy2 y2, (31)

db

dt
5 bu1 su1 y2 rb , (32)

where p[ (g/b)2, s[ (sb)/(gd), and r52kT. 0. For

the sake of convenience, Table 1 lists typical values of all

parameters in the MSD system (30)–(32). With the

nondimensional form, the critical point (Uc, Vc, Bc) of

the MSD system (30)–(32) is now simply (21, 1, 1) in

the absence of stratification and radiative cooling (i.e.,

r5 s5 0), and it will be referred to hereinafter as the

MPI critical point, because its y component displays a

similar value as the MPI limit.

In the presence of both radiative cooling and stratifi-

cation, the critical point of Eqs. (30)–(32) is no longer

(21, 1, 1) but is shifted to a slightly different point in the

phase space of (u, y, b). Indeed, the only positive critical

point of the system (30)–(32) in the presence of radiative

forcing and tropospheric stratification is now given by

u
c
52y

c
, y

c
5

2r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 4(12 s)

p
2

, b
c
5
(12 s)y

c

y
c
1 r

,

(33)

where only the root of a quadratic equation for yc with a

plus sign is selected in Eq. (33) because of our restriction

on the domain y. 0.

A number of interesting results can be derived from

the expression for the MPI critical point given by Eq.

(33). First, we recall that the parameters r and s repre-

sent the effects of the radiative cooling and stratification

of the troposphere on the TC development, whose range

is typically 2 [0, 1] in the nondimensional unit. Direct

inspection of yc given by Eq. (33) shows that yc depends

more sensitively on the stratification parameter s than

on the radiative forcing parameter r. Specifically, as the

radiative forcing becomes stronger, the MPI limit de-

creases roughly as a linear function because of the re-

duction of the warm-core amplitude at the MPI

equilibrium (see Fig. 1a), which is consistent with the

modeling study by Rotunno and Emanuel (1987).

The dependence of yc on s is somewhatmore subtle, as

yc decreases rapidly when s increases (Fig. 1b). Indeed,

for r � 1, yc can be approximated as yc ’
ffiffiffiffiffiffiffiffiffiffi
12 s

p
, which

is given in the full dimensional form as follows:

V2
c ’V2

MPI

"
12

gH2(G
d
2G)

V2
MPIT

#
, where

V2
MPI 5

C
h

C
d

(T
s
2T

0
)

T
s

(s
s
2 s

a
) . (34)

Expression (34) for the MPI critical point Vc is note-

worthy, as it reveals an explicit dependence of the MPI

limit on the tropospheric stratification measured in

terms of (Gd 2G); the more stable the tropospheric

stratification is [i.e., the larger (Gd 2G)], the weaker the

MPI limit would be. This result is physically reasonable,

because a stable troposphere tends to be inimical to the

development of deep convection and thus limits the
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maximum potential intensity that a storm can attain.

Such impact of the tropospheric stratification as derived

from Eq. (34) is in good agreement with a number of

previous modeling studies (Shen et al. 2000; Tuleya et al.

2016; Hill and Lackmann 2011). In fact, Hill and

Lackmann (2011) suggested that the tropospheric stabi-

lization could offset as much as 50%of the increase in TC

intensity related to warmer SST in their experiments.

While the above expression for the MPI limit ex-

plicitly contains the stratification factor, it is important

to note that the atmospheric stratification is not a free

parameter, but it is generally a function of multiple

atmospheric conditions such as SST, tropopause

temperature, ormoisture structure that is constrained by

the radiative–convective equilibrium. Because of this

interrelation among the large-scale parameters, the

variability of the MPI limit should be a multivariate

function of atmospheric conditions beyond the direct

SST dependence as dictated by Emanuel’s MPI for-

mula. The specific dependence of the MPI limit on the

atmospheric stratification as given by Eq. (34) is sig-

nificant, because it reveals subtle impacts of the tro-

pospheric stratification on TC intensity variability,

which to our knowledge has not been demonstrated

previously. In this regard, Eq. (34) can be used to

validate the applicability of the MSD system in a full-

physics model framework, which we will present in

our upcoming study.

Second, in the presence of the strong tropospheric

stratification and radiative cooling, one notices an in-

tricate behavior of critical point yc given by Eq. (33)

similar to that in the HSD system (see appendix 1 in

K2015). Specifically, the critical point yc will be pulled

toward the origin (0, 0, 0) as the parameter s/ 1, and

it merges with the zero critical point (0, 0, 0) for s5 1,

resulting in a saddle-node bifurcation. For an even

more stable troposphere such that s. (r2 1 4)/4, the

MPI critical point completely disappears, and the TC

development would never occur. As a result, one would

expect the tropospheric stratification to be close to

neutral so that an incipient vortex could grow. Such a

critical role of the tropospheric stratification obtained

from the MSD system to some extent supports the

previous finding about the decrease of the MPI limit

due to changes of the stratification in the outflow layer

discussed in Emanuel and Rotunno (2011). Of course,

this consistency with Emanuel and Rotunno (2011)’s

study is by no means exact, because Emanuel and

Rotunno (2011)’s study is mostly concerned with the

stratification of the outflow layer, whereas our MSD

system focuses on the stratification of the entire

tropospheric depth.

From the dynamical perspective, the existence of

critical points alone is not sufficient to depict the full

evolution or stability of a dynamical system. Any ana-

lyses of the critical-point stability would require specific

TABLE 1. Table of values of tropical cyclone scales and related parameters.

Parameter Value Remark Reference

Vc ;65m s21 Typical scale of the maximum tangential wind at the critical point

for SST of 308C
Assigned

Uc ;5m s21 Scale of the radial wind at the critical point (Uc 5RCDVc/h) Derived from Eq. (22)

Bc ;0:4m s22 Scale of the maximum buoyancy that corresponds to the warm core at

the vortex center [Bc 5V2
Ca(g

2 1b2)/g2]

Derived from Eq. (22)

S ;53 1024 s22 Tropospheric stratification [S[ g(Gd 2G)/T] Assigned

DF ;4000m2 s22 Scale of the geopotential deficit between the vortex center and the

radius of maximum wind (DF5BcH)

Derived from Eq. (8)

H ;104 m Scale height of the troposphere Assigned

h ;103 m Depth of the PBL Assigned

CD ;1:53 1023 Surface drag coefficient Assigned

R ;503 103 m Radius of the maximum tangential wind Assigned

g ;23 1025 m21 Inverse of the radius of the maximum wind (g5 1/R) Definition

a ;1024 m21 Inverse of the scale height H (a5 1/H) Definition

b ;1:53 1026 m21 Ratio of the surface drag to the PBL depth (b5CD/h) Definition

d ;53 1025 s22 WISHE feedback parameter (d5bBc) Derived from Eq. (22)

k ;1025 s21 Newtonian cooling relaxation rate Assigned

T ;104 s Characteristic time scale [T[ 1/(bVc)5 h/CDVc] Definition

p ;178 Nondimensional square ratio of the PBL depth over the RMW

[p[ (g/b)2 5 (h/RCD)
2]

Definition

r ;0:1 Nondimensional parameter representing the radiative cooling

(r[kT5kh/CDVc)

Definition

s ;0:15 Nondimensional parameter representing the tropospheric

stratification (s[Sb/ad)

Definition
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properties of the linearized Jacobian matrix at the crit-

ical points, to which we now turn.

b. Linear stability analysis

In this section, we will examine the stability of the MPI

critical point xc [ (uc, yc, bc) given by Eq. (33) for the

generalMSDsystem in thepresenceofboth the stratification

and the radiative cooling (i.e., r 6¼ 0 and s 6¼ 0).Our aim is to

show that this critical point is asymptotically stable, and its

stability is furthermore continuous in the parameter space

(p, r, s).Asa consequence, (uc, yc, bc) is locally structurally

stable, thus establishing the stable property for the MPI

equilibrium as seen from previous modeling studies.

We first linearize the MSD system around the critical

point (uc, yc, bc) by setting u5 uc 1 x, y5 yc 1 y, and

b5 bc 1 z, where (x, y, z) are small perturbations, toobtain

dx

dt
52y

c
x1 (2py

c
2 u

c
)y2 (p1 1)z , (35)

dy

dt
52y

c
x2 2y

c
y , (36)

dz

dt
5 (b

c
1 s)x1 y2 rz . (37)

The Jacobian matrix for the MSD system (30)–(32) at

xc is therefore given by

FIG. 1. (a) Dependence of the maximum tangential wind y at the MPI equilibrium on the

radiative forcing parameter r in the MSD system (30)–(32), and (b) as in (a), but for the

dependence of y on the tropospheric stratification parameter s in the MSD system.
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›F(x)

›y

����
xc

5

0
B@

2y
c

2py
c
2 u

c
2p2 1

2y
c

2u
c
2 2y

c
0

b
c
1 s 1 u

c
2 r .

1
CA. (38)

Direct calculation of eigenvalues for the Jacobian ma-

trix leads to the following characteristic equation:

l3 1Al2 1Bl1C5 0, (39)

where

A(x
c
, p, r, s)5 3y

c
1 r , (40)

B(x
c
,p, r, s)5 2(p1 1)y2c 1 2y

c
(y

c
1 r)1 (p1 1)

y
c
1 rs

r1 y
c

,

(41)

C(x
c
,p, r, s)5 (p1 1)(b

c
y
c
1 sy

c
)1 (y

c
1 r)2(p1 1)y2c

2 (p1 1)y
c
, (42)

Note here the continuous dependence of the co-

efficients A, B, and C on the model parameters

(p, r, s), which facilitates our later examination of the

local structural stability. Recall that the critical point

xc is stable if and only if the cubic Eq. (39) possesses all

three roots with negative real parts. The existence of

three roots with negative real parts is guaranteed if the

following conditions for the coefficients A, B, and C

are applied (see, e.g., Abramowitz and Stegun 1972,

17–18; Ma and Wang 2011):

A(x
c
, p, r, s). 0, C(x

c
,p, r, s). 0, (43)

A(x
c
, p, r, s)B(x

c
, p, r, s)2C(x

c
,p, r, s). 0, (44)

With the exact expression for the critical point as given

by (33), the explicit expressions for A, B, and C are

given by

A(x
c
, p, r, s)5 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
1 12 s

r
2

r

2
. 0, (45)

B(x
c
, p, r, s)5 (p1 1)

�
3y2c 2 2sy2c 1 rsy

c

12 s
1

22 2s

p1 1

�
. 0,

(46)

C(x
c
, p, r, s)5 (p1 1)(y3c 1 y

c
2 sy

c
). 0, (47)

and the condition (44) therefore becomes

A(x
c
, p, r, s)B(x

c
, p, r, s)2C(x

c
,p, r, s)5 (p1 1)

" 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
1 12 s

r
2

r

2

!�
3y2c 2 2sy2c 1 rsy

c

12 s
1
22 2s

p1 1

�

2 (y3c 1 y
c
2 sy

c
)

#
. (48)

Use the following identity

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
1 12 s

r
2

r

2
5 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
1 12 s

r
2

3r

2
1 r5 3y

c
1 r ,

and note that for 0 , r, s , 1,

3y2c 2 2sy2c 1 rsy
c

12 s
1
22 2s

p1 1
.

3y2c 2 2sy2c 1 rsy
c

12 s
. 2y2c ,

we obtain

A(x
c
,p, r, s)B(x

c
,p, r, s)2C(x

c
, p, r, s). (p1 1)[(3y

c
1 r)2y2c 2 y3c 2 y

c
1 sy

c
]5 (p1 1)y

c
(5y2c 1 2ry

c
1 s2 1)

5 (p1 1)y
c
(4y2c 1 ry

c
). 0: (49)

Apparently, both conditions (43) and (44) are satisfied

at the critical point xc, and the characteristic Eq. (39)

thus possesses all roots with negative real parts (see

appendix B for explicit expressions for the eigenvalues

of the Jacobian matrix evaluated at the critical point xc).

As a result, the MPI critical point xc is asymptotically

stable as expected. Because all eigenvalues of the

Jacobian matrix (38) are continuously dependent on

(p, r, s) and the nonzero critical point in Eq. (33) is

hyperbolic, xc is not only asymptotically stable but

also locally structural stable, based on the Hartman–

Grobman theorem (Alligood et al. 1996). For the zero

critical point (0, 0, 0), it is easy to see that this critical

point is an unstable node, and the MSD system has in-

deed only one stable point xc in the domain y. 0 given

by Eq. (33).

That the MPI equilibrium is unique and structurally

stable in the domain y. 0 has an important consequence
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in study of TC development. As discussed in the in-

troduction section, this stability indicates that regardless of

the vortex initial condition with which one initializes a TC

model, the final stage of TC intensitywill be unique, and it is

determined by the large-scale environment as given by the

MPI limit (e.g., Emanuel 2000). As long as the favorable

environmental conditions are maintained, the incipient

vortex will soon approach its MPI equilibrium, a result very

similar to that obtained in the HSD system (K2015).

On the other hand, the existence of a unique stable

point in the MSD system indicates that the v-forward

limit set of the MSD system consists of a single point,

and so all intensity variation would have to asymptoti-

cally approach zero. As discussed in Kieu and Moon

(2016), this asymptotically zero intensity growth turns

out to be inconsistent with the saturation of TC intensity

errors around 8–10ms21 as obtained from the real-time

verification of TC intensity forecasts. This inconsistency

between the MSD v-forward set and the intensity error

saturation reflects the shortcoming of the MSD system

in representing the full dynamics of TCs whose MPI

attractor has much more complex structure (Kieu and

Moon 2016). Therefore, the full characteristics of the

MPI attractor have to be resolved with full-physics

model simulations, which are, however, beyond the

scope of the MSD system in this study.

As a demonstration of the stability of the MPI equi-

librium, Fig. 2 shows several examples of floworbits in the

phase space of (u, y, b) for a range of initial conditions,

using the Runge–Kutta fourth-order scheme with a time

step Dt5 0:001 (;10 s in the full dimensional unit). De-

spite much different initial conditions, these orbits all

converge to the same critical point as expected, thus

confirming the above linear stability analyses. Note that

the aforementioned stability analysis by no means en-

sures the global stability or dictates the basin of attraction

around the critical point. An important question re-

garding the basin of the attraction of the MPI point is

much harder to quantify and has to be addressed from a

numerical perspective. Our various sensitivity experi-

ments with the MSD system show that the domain of

attraction for the MPI critical point appears to be suffi-

ciently large and includes all points in the domain D [
(u, y, bju# 0, y. 0, b$ 0). From a practical stand-

point, this large basin of attraction implies that all

initial data points are almost guaranteed to grow if

y. 0, a fact that has been indeed well documented in

modeling studies of TC development.

c. The frequency of oscillation near stable critical
points

The numerical solutions illustrated in Figs. 2 and 3

reveal an interesting property that every trajectory x(t)

appears to possess two different time scales: one is a

short time scale associated with a rapid oscillation of

period;0.2 unit time (’1h) and the other much longer

time scale at;5 unit times (’18h) as the flows approach

the critical point. The existence of the two different time

scales is to some extent similar to the well-known two

time scales in Lorenz’s three-variable model; the slower

time scale represents the duration of an orbit residing in

one sector of the Lorenz attractor, and the other faster

time scale represents the oscillation around the unstable

point inside each sector (Palmer 1993).

For our MSD system, the two different time scales are

seen for all orbits in the phase space (U, V, B) and

signify that the development of TCs is not a simple linear

growth as often assumed in previous studies (e.g.,

Charney and Eliassen 1964; Yanai 1964; Ooyama 1969).

Instead, the tangential wind experiences a rapid spinup

for a few hours and is then followed by a break before

it resumes its amplification, as seen in Fig. 3a. In fact,

the same phenomenon is also seen in the HSD model

even under the exact gradient wind balance and non-

hydrostatic approximation (K2015). The consistent be-

haviors of these two distinct time scales between the

MSDandHSDmodels suggest that the TC development

inherently possesses more subtle characteristics than the

traditional linear growth.

To quantify the frequency of the short time scale in

the MSD system, we observe one important property

from our numerical experiments with theMSD system

that the frequency associated with this short time scale

FIG. 2. Flow trajectories in phase space (u, y, b) for four dif-

ferent initial points in the phase space of (u, y, b) that represent

an incipient weak vortex (0, 0.1, 0.1) (red); a mature TC near

the MPI equilibrium with a too-weak warm core (21, 1, 0.5)

(cyan); a mature TC with intensity significant above the MPI

equilibrium limit (21, 1.4, 1) (green); and a mature TC near the

MPI equilibrium limit with too-weak low-level convergence

(20.1, 1, 1) (blue).
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is maintained during the entire period as a flow ap-

proaches its MPI critical point (see Fig. 3). At the

asymptotic limit of t/‘, this fast frequency v(t) will

approach a limit v0, which is the frequency evaluated

at the MPI critical point. This observation suggests

that the fast frequency v(t) can be estimated as

v0 [ I[l(xc)] at t/‘, where I[l(xc)] is the imaginary

part of the complex eigenvalue of Eq. (38) at the MPI

critical point xc.

Given this observation, we can therefore obtain an

estimation for the fast frequency v0 as a function of

the model parameters (p, r, s) by working specifically

at the MPI point. The general expression for v0 as a

function of the full parameter (p, r, s) is complicated.

However, an explicit expression for this fast fre-

quency can be approximated for a simple case in

which the radiative forcing is sufficiently small as

follows:

v
0
(p, 0, s)5

ffiffiffi
3

p

2

2R

2
1

�
R2

4
1

Q3

27

�1/2 1/3
#"

1

ffiffiffi
3

p

2

2R

2
2

�
R2

4
1

Q3

27

�1/2 1/3

,

#"
(50)

where the functions R and Q are defined as

Q5
3a

2
2 a21
3

and R5
2a21 2 9a

1
a
2
1 27a

3

27
, (51)

and the coefficients a1, a2, and a3 are, respectively,

given by

a
1
5 3

ffiffiffiffiffiffiffiffiffiffi
12 s

p
, a

2
5 (p1 1)(32 2s)1 22 2s,

a
3
5 2

ffiffiffiffiffiffiffiffiffiffi
12 s

p
(12 s) . (52)

If we assume further that the atmosphere is close to

neutrality such that s � 1, the above expression for the

fast frequency is reduced to

v
0
(p, 0, 0)5

ffiffiffi
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p

2

3

2
p1

7
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1
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p3 1
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p
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(53)

For a sufficiently large value of the parameter p (see

Table 1), this internal fast oscillation frequency turns out

to be mostly proportional to
ffiffiffi
p

p
, as speculated in K2015.

Using the definition of the parameter p (see Table 1), it is

seen that this fast frequency in the full dimensional form is

FIG. 3. Time evolution of (a) the nondimensionalized maximum

tangential wind y, (b) the maximum radial wind u, and (c) the

maximum buoyancy variable b for four different initial points il-

lustrated in Fig. 2. Note that one unit of time corresponds to ;3 h,

and theMPI equilibrium is located roughly at (20:86, 0:86, 0:86) in

the limit of small radiative forcing (r5 0:1) and weak tropospheric

stratification (s5 0:1).
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ultimately expressed as v;Vc/R; that is, the smaller the

radius of the maximum wind R, the faster the storm in-

tensitywill fluctuate given the sameMPI limit.Our various

sensitivity experimentswith the fullMSDsystem (30)–(32)

show that this estimation of the fast frequency is reason-

ably good even in the presence of both the radiative

forcing and the tropospheric stratification, provided that

s, 0:1 (not shown).

Physically, such a fast oscillation reflects the nature

of the TC-scale model given by Eqs. (30)–(32). As-

sume that y increases too fast at some instance of

time, then the WISHE feedback would lead to a

stronger increase of the buoyancy (i.e., warm core),

thus enhancing the radial inflow u in the PBL as given

by Eq. (30). Such an increase of the inflow would in

turn lead to stronger advection of the AAM and help

spin up the tangential wind y so rapidly that the

centrifugal force would soon dominate the right-

hand side of Eq. (30). As a result of this rapid

increase of the centrifugal force, the radial wind is

reduced, leading to a break on the AAM advection

and subsequently a slowdown of the tangential wind

spinup. As seen from Eq. (30), the time scale of this

process is proportional to
ffiffiffi
p

p
, and explains the fast

frequency as seen in Fig. 3. Because of the connec-

tion between the radial and vertical motions as con-

strained by the continuity equation, it turns out that a

similar mechanism related to the rapid oscillation of

w can justify the fast frequency in the HSD system as

presented in the next section.

In contrast to the fast oscillation associated with the

competition between the centrifugal force and the in-

ward pressure gradient, the other slower frequency is

determined by the balance between the advection of the

AAM and the frictional force in the tangential mo-

mentum in Eq. (31). This slow frequency can be deduced

if one notes that the frictional force ;y2 in Eq. (31)

becomes significant only when the tangential flow is

sufficiently large. Thus, the spinup of the tangential flow

y can be slowed down only when the frictional force is

comparable to the AAM advection. Indeed, a direct

inspection of Eq. (31) shows that this long time scale is

;1/jucj’ 1,3 which is much longer than the short time

scale associated with the fast oscillation ;1/
ffiffiffi
p

p
’ 0:1

mentioned above. These different underlying mechanisms

account for two different time scales during the TC de-

velopment as seen in Fig. 3a.

It is of interest to note that the nature of the fast

oscillation during the TC development due to the

imbalance between the centrifugal force and the in-

ward pressure gradient in the radial momentum

equation as described above is very similar to the

oscillation of a ring mode in the TC inner-core region

(Kieu 2016). Using the gradient wind balance to

define a mean state for the inner core of a TC-like

vortex, Kieu (2016) showed that an internal oscilla-

tion frequency around a balanced vortex with the

maximum tangential wind V and the radius of maxi-

mum wind R is proportional to V/R. Similar to the

fast frequency in the MSD system, the restoring force

in both the MSDmodel and the balanced wave model

is the imbalance between the centrifugal force and

the pressure gradient. Of course, this similarity is

somewhat superficial, as the wave model presented in

Kieu (2016) is frictionless and applied strictly for the

stationary background vortex, whereas the fast os-

cillation presented in this study is for an evolving

storm. However, the same nature of the restoring

force for the fast oscillation between these two

studies indicates that the gradient wind imbalance

appears to be the primary factor responsible for the

fast fluctuation of the TC intensity during TC

development.

4. Discussion

The fact that the extended TC-scale model pre-

sented in this study could provide consistent results

with the HSD model in K2015, despite different un-

derlying approximations, is very intriguing. Specifi-

cally, the HSD model employs the gradient wind

balance and the nonhydrostatic approximation,

whereas the MSD model is based on gradient wind

imbalance and hydrostatic balance. In both models,

we obtain a very similar value of the MPI critical

point [apart from a small factor ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2/(g2 1b2)

p
] for

the maximum tangential wind, the same asymptotic

stability for the MPI point, and the same charac-

teristic of the fast and slow time scales during TC

development.

This consistency between the HSD and the MSD

models turns out to be understandable if one recalls

the particular diagnostic role of the continuity equa-

tion. Under the Boussinesq approximation, the conti-

nuity equation will simultaneously determine either U

or W if we know the other. As such, the inclusion of

both the radial momentum equation and the non-

hydrostatic approximation does not lead to a new

3A rough estimation of the longer time scale can be seen by

directly integrating Eq. (31), assuming the largest inflow value uc,

which gives y(t)5 (jucjejuc jt)/(11 jucjejuc jt). Thus, the longer time

scale is proportional to 2:7/jucj, or roughly 2:7h/(ChVc) in the full

dimensional form.
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prognostic equation in the framework of scale analysis.

To understand further the implication of this di-

agnostic nature of the continuity equation, assume one

extends the MSD system (30)–(32) by including the

vertical momentum equation in the nonhydrostatic

form as follows (see K2015):

dU

dt
5 gV2 2 gDF2bUV , (54)

dV

dt
52gUV2bV2 , (55)

dW

dt
52aDF1B , (56)

dB

dt
5 gUB1sU1Q . (57)

Substitute the relationship U52WR/H[2aW/g that

is obtained from the continuity equation into Eq. (54),

and we have

dW

dt
52

g2

a
V2 1

g2

a
DF1

bg

a
UV . (58)

The consistency between the radial momentum equa-

tion [Eq. (58)] and the vertical momentum equation

[Eq. (56)] under the Boussinesq constraint is therefore

ensured if and only if

2
g2

a
V2 1

g2

a
DF1

bg

a
UV52aDF1B , (59)

from which

DF5
1

a2 1 g2
(g2V2 1Ba2bgUV)

5
R2H2

R2 1H2

�
V2

R2
1

B

H
2

bUV

R

�
(60)

As seen from Eq. (60), in the limit of a large storm

(i.e., R � H), it is apparent that DF5BH, which is

identical to Eq. (11) use in section 2. This result is

physically expected because a large storm tends to

approach the hydrostatic balance. In the limit of

H � R, one has DF;V2, which results in the HSD

system exactly obtained in K2015. Regardless of the

limit of the small or large storm, note that DF will

be always of the form DF;BH1V2 1UV. Upon

substituting Eq. (60) back into Eq. (54), the new system

of Eqs. (54)–(57) becomes similar to the MSD system

(30)–(32) examined in section 2 above, at least in the

nondimensional form as follows:

du

dt
5 p

1
y2 1 p

2
b1 p

3
uy , (61)

dy

dt
52uy2 y2, (62)

db

dt
5 bu1 su1 y1 rb , (63)

where the new set of coefficients (p1, p2, p3) in Eq. (61)

now incorporate the impacts of nonhydrostatic effects,

which are different from the values [p, 2(p1 1), 21] in

Eq. (30) of the MSD system.

With the similar functional form for the forcing on

the right-hand side of Eqs. (61)–(63) as in the MSD

system, it is anticipated that the stability of the MSD

system would not drastically change. Indeed, our nu-

merical experiments with the system in Eqs. (61)–(63)

do confirm the same stability as in the original MSD

system (30)–(32), albeit the critical point is slightly

shifted. Thus, the MSD system (30)–(32) is compat-

ible with the HSD system presented in K2015 and

explains why the stability properties in the new

MSD system presented in this study are similar to

those obtained by K2015. In this regard, the strong

diagnostic constraint of the continuity equation re-

veals a surprising fact that the gradient wind balance

and the nonhydrostatic equation are consistent with

the gradient wind imbalance in the PBL under the

hydrostatic approximation.

5. Conclusions

In this study, a low-order model based on the TC

basic scales has been presented to study the stability of

the MPI equilibrium. Unlike the previous model pro-

posed by K2015 in which the gradient wind balance and

neutral stratification were assumed, the modified TC-

scale dynamical (MSD) model in this study takes into

account both the gradient wind imbalance in the PBL

and the atmospheric stratification. Stability analyses of

this extended model showed a similar MPI critical

point under the WISHE feedback mechanism. Specif-

ically, we established that the MPI critical point in the

extended TC-scale model has the same structural sta-

bility property as in K2015’s model.

Unlike the traditional approach to the MPI equi-

librium that is based on either integration of the

thermal wind along the eyewall AAM surface or

the heat-engine approach (Emanuel 1986, 1988), the

MPI equilibrium obtained from the MSD system in

this present study is a natural result of the TC

internal dynamics under the WISHE feedback. That

different approaches and balance approximations

could lead to the same MPI point and stability

behaviors suggests the unique nature of the

MPI equilibrium, whose asymptotic stability can be
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reasonably captured by gradient wind balance and

hydrostatic balance.

Our analyses of theMPI critical point in the presence

of both radiative forcing and tropospheric stratification

showed further that the MPI depends more sensitively

on the stratification of the atmosphere than on the ra-

diative forcing. For the case of weak radiative forcing,

an approximated expression for the MPI as a function

of the tropospheric stratification is given by V2
c 5

V2
MPI(12 s), where s is a parameter representing the

tropospheric stratification [i.e., s; (Gd 2G)]. This is an
important finding, as it demonstrates how the MPI

equilibrium explicitly depends on the environmental

lapse rate G beyond the traditionalMPI theory. As seen

from this new MPI expression, a more stable atmo-

sphere will be less conducive to the TC development

and result in a lower MPI limit under the same SST and

outflow conditions.

Additional examination of the MSD model revealed

also that TC development is inherently characterized

by two different time scales. Specifically, there exists a

short time scale (,1 h), which is associated with the fast

oscillation related to the strong competition between

the centrifugal force and the inward pressure gradient.

The frequency of this fast oscillation is approximately

proportional to the ratio of theMPI limitVMPI over the

RMW R. In contrast, the other longer time scale is

related to a slower increase of the frictional force with

time. Given that the frictional force is proportional to

the y2, it would take a longer time (;1 day) for the

frictional force to balance the acceleration due to the

inward advection of the absolute angular momentum,

thus explaining the existence of a longer time scale in

TC development. It is this longer time scale that de-

termines the asymptotic convergence toward the MPI

equilibrium. The existence of these two time scales

indicates that TC development is not a simple mono-

tonic growth as often assumed in previous studies of TC

development but should be characterized by two dif-

ferent time scales.

Similar to the HSD model presented in K2015, the

MSD model in this study suffers from a number of

weaknesses. First, the MSD model does not include

detailed microphysics processes, cloud radiative feed-

backs, or the eye dynamics that may change the MPI

limit and potentially affect its stability. While the MSD

model could allow for the imbalance process in the

PBL, the lack of these physical processes prevents the

MSD model from describing a number of important

features such as supergradient wind, eyewall re-

placement, the weak subsidence in the TC eye, or how

TCs can interact with vertical wind shear. These issues

can only be properly addressed using the full-physics

model, which is, however, beyond the scope of the TC-

scale framework. Our modest goal of this study is to

provide different insight into the stability of the MPI

equilibrium with different balanced approximations

under idealized large-scale conditions. As such, these

caveats are unavoidable.

A second shortcoming of the MSD model is related

to the unaccounted variations of different length

scales such as the change of the PBL depth h, the

vertical depth of the troposphere H, or the RMW R.

Among several different length scales, the assump-

tion of a fixed RMW R seems to be the least justified,

because R is known to contract during TC rapid in-

tensification. It should be noted, however, that this

assumption of a fixed RMW is not a serious problem

in our analyses of the asymptotic MPI stability, be-

cause the scale of the RMW is about 104–105m. Our

examination of a variation of the RMW between 30

and 100 km captures a small change in all TC-scale

analyses. In addition, the RMW contraction is most

rapid at the early stage of TC intensification. Very

often the contraction ceases at the middle of the in-

tensification and subsequently maintains a nearly

constant RMW after a vortex becomes sufficiently

strong (Kieu 2012). As such, the assumption of a fixed

RMW is not a severe limit in our stability analyses, at

least from the asymptotic MPI stability perspective. Of

course, this justification of a fixed RMW by no means

overcomes the shortcomings of the MSD model due to

other unaccounted variations and approximations. In this

regard, the applicability of the MSD model should be

limited within an idealized framework and further vali-

dated using the full-physics models that we plan to follow

in a future study.
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APPENDIX A

Coriolis Effects on the MPI Limit

Inclusion of the Coriolis force in the MSD system

results in much more complex analyses of critical points

and their related stability. In this appendix, we will show

that inclusion of the Coriolis force will not change the

stability of the MPI equilibrium. While there are more
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technical issues related to the existence of additional

critical points and expansion of the basin of attraction, it

suffices to present an important result that there is still

only one stable critical point in the presence of the

Coriolis force, and it is in the neighborhood of the crit-

ical points (uc, yc, bc) given by Eq. (33) for the case

f 5 0. In addition, the structural stability of this critical

point is not changed. To prove this result, we note that in

the nondimensional form, the MSD system with the

Coriolis force will have two extra terms in the radial

momentum equation and the tangential momentum

equation as follows:

_u5 py2 2 (p1 1)b2uy1 pfy , (A1)

_y52uy2 y2 2 fu , (A2)

_b5 bu1 su1 y2 rb , (A3)

where f 5 f*Uc/(bV
2
c )’ 0:05 is a nondimensional num-

ber representing impacts of the Coriolis force and f* 5
2V sin(u) ’ 1024–1025 s21 is the typical dimensional

Coriolis parameter at a given latitude u ’ 108N. The

critical points for system (A1)–(A3) satisfy the following

algebraic equations:

py2 2 (p1 1)b2 uy1 pfy5 0, (A4)

2uy2 y2 2 fu5 0, (A5)

bu1 su1 y2 rb5 0: (A6)

Obviously, (0, 0, 0) is a solution of Eqs. (A4)–(A6), and

all other critical points y of Eqs. (A4)–(A6) satisfy the

following equation:

y4 1 ay3 1by2 1 cy1 d5 0, (A7)

where coefficients a, b, c, and d are given by

a5
2pf

p1 1
1 r , (A8)

b5
2pfr

p1 1
1 fr1 s2 11

pf 2

p1 1
, (A9)

c5
3prf 2

p1 1
1 f (s2 2), (A10)

d52f 2 1
prf 3

p1 1
. (A11)

Note that when f 5 0, Eqs. (A8)–(A11) are equivalent to

y2 1 ry1 s2 15 0, (A12)

and the roots of Eq. (A12) are as follows:

y
1
5

2r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 42 4s

p

2
, (A13)

y
2
5

2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 42 4s

p

2
, (A14)

as established in section 3 so that system (A1)–(A3) has

three critical points given by

x
0
5 (0, 0, 0), x

1
5

�
2y

1
, y

1
,
(12 s)y

1

r1 y
1

�
,

x
2
5

�
2y

2
, y

2
,
(12 s)y

2

r1 y
2

�
, s 6¼ 1: (A15)

Given these critical point for f 5 0, we show next that

Eqs. (A1)–(A3) will have only two real nonzero critical

points for 0, jf j � 1; one is in the d neighborhood of

the x1, and the other is in the d neighborhood of the x2.

Denote

F(x, f )5

2
64 py2 2 (p1 1)b2uy1 pfy

2uy2 y2 2 fu

bu1 su1 y2 rb

3
75, x5

0
@ u

y

b

1
A .

(A16)

Let x5 y1 xi (i5 1 or 2), where y is a small perturbation

around the critical point xi, and

M5

2
66664

2y
i

2py
i
1 y

i
1 pf 2p2 1

2y
i
2 f 2y

i
0

(12 s)y
i

r1 y
i

1 s 1 2y
c
2 r

3
77775 , (A17)

then the Jacobian of Eqs. (A1)–(A3) evaluated at any

critical point xi can be approximated as an expansion in

terms of the Coriolis parameter f as follows:

G(x, f )[F(x
i
1 y, f )5MyT 1 h(y) , (A18)

h(y)5

0
B@Py22 2 y

1
y
2
1 pfy

i

2y
1
y
2
2 y22 1 f y

i

y
3
y
1

1
CA . (A19)

Furthermore, we have

›G(y, f )

›y

����
(y,f )5(0,0,0,0)

5

2
666664

2y
i

2py
i
1 y

i
2p2 1

2y
i

2y
i

0

(12 s)y
i

r1 y
i

1 s 1 2y
i
2 r

3
777775,

(A20)
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and

det

"
›G(y, f )

›y

����
(y,f )5(0,0,0,0)

#
, (A21)

5

������������

2y
i

2py
i
1 y

i
2p2 1

2y
i

2y
i

0

(12 s)y
i

r1 y
i

1 s 1 2y
i
2 r

������������
, (A22)

5(p1 1)(12 s)
ry

i
2 2(12 s)

r1 y
i

6¼ 0 (s 6¼ 1). (A23)

By the implicit function theorem, there exists a

positive number 1 � l0 . 0 such that for any jyj, l0,

Eqs. (A4)–(A6) have two zeros given by

x
fi
5 x

i
1u

i
( f ), u

i
(0)5 0, i5 1, 2. (A24)

Hence, for 0, jf j, d � 1, the system (A4)–(A6) has

two critical points, which are in the small neighborhood

of points x1 and x2, respectively. Following the same

analyses, it is possible to show further that the other two

roots of Eq. (A7) are complex as the set of parameters

(r, s, f ) are near the point (0, 1, 0) but real when (r, s, f )

are near the point (0, 0, 0); both are unstable and will

not be hereinafter examined further.

To finally confirm the stability of the critical points x1
and x2 of the system (A1)–(A3), let xc 5 (yc, wc, bc) be

any critical points, the Jacobi matrix F at xc is as follows:

›F(x)

›y

����
(xc)5(yc,wc,bc)

5

0
B@

2y
c

2py
c
2 u

c
1pf 2p2 1

2y
c
2 f 2u

c
2 2y

c
0

b
c
1 s 1 u

c
2 r

1
CA,

(A25)

Direct calculation of the determinant of Eq. (A25)

yields the following characteristic equation of matrix F:

l3 1Al2 1Bl1C5 0, (A26)

where

A(x
c
,p, r, s, f )5 3y

c
1 r , (A27)

B(x
c
, p, r, s, f )5 2(p1 1)y2c 1 3pfy

c
2 fu

c

2 (u
c
2 r)(3y

c
1 u

c
)

1 (p1 1)(b
c
1 s)1 pf 2 , (A28)

C(x
c
,p, r, s, f )5 (p1 1)(b

c
u
c
1 2b

c
y
c
1 su

c
1 2sy

c
)2 (u

c
2 r)(2y2c 1 2py2c 1 3pfy

c
2 fu

c
)

2 (p1 1)(y
c
1 f )2 pf (fu

c
2 rf ) . (A29)

For the case of f 5 0, one recovers the coefficients

A, B, and C as in section 2a as follows:

A(x
i
,p, r, s, 0)5 3y

i
1 r , (A30)

B(x
i
, p, r, s, 0)5 2( p1 1)y2i1 2y

i
(y

i
1 r)1( p1 1)

y
i
1 rs

r1 y
i

,

(A31)

C(x
c
, p, r, s, f )5 ( p1 1)(b

i
y
i
1 sy

i
)1(y

i
1 r)2(p11)y2i

2( p11)y
i
, (A32)

Obviously,

A(x
2
,p, r, s, 0), 0, (A33)

which means Eq. (A26) has at least one positive root

(i.e., x2) that is unstable as expected. For the critical

point x1, it is stable if and only if

A(x
1
, p, r, s, 0). 0, C(x

1
, p, r, s, 0). 0, (A34)

A(x
1
, p, r, s, 0)B(x

1
, p, r, s, 0)2C(x

1
, p, r, s, 0). 0:

(A35)

With the exact expression in Eq. (A14), we get

A(x
i
, p, r, s, 0)5 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
1 12 s

r
2

r

2
. 0, (A36)

B(x
i
, p, r, s, 0)5 (p1 1)

�
3y21 22sy21 1rsy

1

12 s
1

22 2s

p1 1

�
. 0,

(A37)

C(x
1
, p, r, s, f )5 (p1 1)(y31 1 y

1
2 sy

1
). 0, (A38)

and

A(x
i
, p, r, s, 0)B(x

i
, p, r, s, 0)2C(x

i
,p, r, s, 0), (A39)
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5(p1 1)

" 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
1 12 s

r
2

r

2

!

3

�
3y21 2 2sy21 1 rsy

1

12 s
1

22 2s

p1 1

�
, (A40)

2(p1 1)(y31 1 y
1
2 sy

1
)] , (A41)

$(p1 1)[(3y
1
1 r)2y21 2 y31 2 y

1
2 sy

1
]. 0: (A42)

All conditions for the existence of eigenvalues with neg-

ative real parts are thus satisfied, and x1 is stable. Note

further that Eqs. (A36)–(A42) and the eigenvalue of

matrix (A25) are continuously dependent on f and the

nonzero critical points x1,2 are hyperbolic. Hence, based

on the Hartman–Grobman theorem, those nonzero crit-

ical points are locally structural stability. As a result, the

stability of the MPI critical point is again established in a

more general case with the Coriolis force as discussed in

the main text. More subtle impacts of the Coriolis on TC

development can be found in Kieu and Wang (2017).

APPENDIX B

Eigenvector Analyses at the MPI Limit

As a demonstration of the linear analysis for the Jacobian

matrix evaluated at the critical point xc in the main text, we

consider first a set of parameters (p, r, s)5 (10, 0, 0)

around which the stability proof presented in section 3b is

approximated. Using a numerical solver, the approximated

eigenvalues for Eq. (38) are given by

l
1
521:17121 5:6646i, l

2
521:17122 5:6646i,

l
3
520:6575,

which correspond to the following eigenvectors:

e
1
5

0
@ 20:9697

20:00522 0:1710i

20:02501 0:1728i

1
A, (B1)

e
2
5

0
@ 20:9697

20:00521 0:1710i

20:02502 0:1728i

1
A, (B2)

e
3
5

0
@20:1563

0:4563

0:8760

1
A. (B3)

Consider next another set of parameters (p, r, s)5
(10, 0:1, 0:1) that is in sufficiently close neighborhood of

(p, r, s)5 (10, 0, 0). Direct calculation of the eigen-

values and eigenvectors for the linearized Jacobian

matrix again gives

l0
1 521:10101 5:2059i, l0

2 521:10102 5:2059i,

l0
3 520:5979,

and the corresponding eigenvectors are

e01 5

0
@ 20:9704

20:00652 0:1675i

20:02891 0:1714i

1
A, (B4)

e02 5

0
@ 20:9704

20:00651 0:1675i

20:02892 0:1714i

1
A, (B5)

e03 5

0
@20:1658

0:4941

0:8535

1
A. (B6)

A quick comparison of the eigenvalues and eigen-

vectors between these two sets of parameters confirms

that these values are very close, thus indicating that the

proof of the stability based on the Taylor expansion

presented in section 3b is correct.
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